An inverse eigenproblem for generalized reflexive matrices with normal $k+1$-potencies
نویسندگان
چکیده
Let P, Q ∈ C be two normal {k+1}-potent matrices, i.e., PP ∗ = P P, P k+1 = P , QQ = QQ, Q = Q, k ∈ N. A matrix A ∈ C is referred to as generalized reflexive with two normal {k + 1}-potent matrices P and Q if and only if A = PAQ. The set of all n × n generalized reflexive matrices which rely on the matrices P and Q is denoted by GR(P,Q). The left and right inverse eigenproblem of such matrices ask from us to find a matrix A ∈ GR(P,Q) containing a given part of left and right eigenvalues and corresponding left and right eigenvectors. In this paper, first necessary and sufficient conditions such that the problem is solvable are obtained. A general representation of the solution is presented. Then an expression of the solution for the optimal Frobenius norm approximation problem is exploited. A stability analysis of the optimal approximate solution, which has scarcely been considered in existing literature, is also developed.
منابع مشابه
An Inverse Eigenvalue Problem and an Associated Approximation Problem for Generalized K-centrohermitian Matrices
A partially described inverse eigenvalue problem and an associated optimal approximation problem for generalized K-centrohermitian matrices are considered. It is shown under which conditions the inverse eigenproblem has a solution. An expression of its general solution is given. In case a solution of the inverse eigenproblem exists, the optimal approximation problem can be solved. The formula o...
متن کاملFinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملMinimization Problems for Generalized Reflexive and Generalized Anti-Reflexive Matrices
Let R ∈ Cm×m and S ∈ Cn×n be nontrivial unitary involutions, i.e., R = R = R−1 = ±Im and S = S = S−1 = ±In. A ∈ Cm×n is said to be a generalized reflexive (anti-reflexive) matrix if RAS = A (RAS = −A). Let ρ be the set of m × n generalized reflexive (anti-reflexive) matrices. Given X ∈ Cn×p, Z ∈ Cm×p, Y ∈ Cm×q and W ∈ Cn×q, we characterize the matrices A in ρ that minimize ‖AX−Z‖2+‖Y HA−WH‖2, a...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملGeneralized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017